Оформление чертежей Выполнение сечений Компоновка изображений Методы простановки размеров Аксонометрические проекции Изображение резьбы Соединение болтом Зубчатые и червячные передачи Последовательность выполнения эскизов


Инженерная и машинная графика

ШЕРОХОВАТОСТЬ ПОВЕРХНОСТИ

Нормирование шероховатости поверхности

Все повеpхности любой детали, независимо от способа их получения, имеют макpо- и микpонеpовности в виде выступов и впадин. Эти неpовности, фоpмиpующие pельеф повеpхности и опpеделяющие ее качество, называют шеpоховатостью повеpхности.
В настоящее вpемя шеpоховатость повеpхности pегламентиpуется ГОСТ 2.789 - 73 и ГОСТ 2.309 - 73. Пеpвый - устанавливает тpебования к качеству повеpхности, учитывая свойства шеpоховатости повеpхности независимо от способа ее обpаботки. Втоpой - устанавливает cтpуктуpу обозначения шеpоховатости повеpхности и пpавила нанесения ее на чеpтежах.

Замечателен храмовый комплекс в Баальбеке (Ливан), отличавшийся восточной пышностью. Главный храм находился в глубине квадратной плошали, обнесённой колоннадой. К плошади вели великолепные пропилеи (парадные ворота) с портиком и расположенным за ним шестиугольным двором, ограждённым колоннадой и стенами. Большой храм и малый, находившийся вне плошади, стояли на высоких цоколях и отличались весомостью ордера, частой расстановкой колонн и богатством декоративных деталей.

З а д а ч а 12. Через прямую l (l1,l2) провести плоскость ∆, перпендикулярную к плоскости Г (m ∩ n) (рис.13).

Р е ш е н и е . Если плоскость содержит в себе перпендикуляр к другой плоскости, то эти плоскости взаимно перпендикулярны. Чтобы провести через прямую l (l1, l2) искомую плоскость, надо из какой-либо точки прямой, например, А(А1;А2), провести перпендикуляр к данной плоскости.

Строим проекции горизонтали h(h1;h2) и фронтали f(f1;f2) плоскости Г(n ∩ m). Затем, проведя А1В1 ^ h1 и А2В2 ^ f2 , получим проекции перпендикуляра к

Рис. 13

плоскости Г. Этот перпендикуляр АВ (А1В1; А2В2) совместно с данной прямой  l (l1, l2) определяют искомую плоскость Δ (l ∩ АВ).

З а д а ч а 13. Построить линию пересечения двух плоскостей Г(АВС) и ∆(DEF) и отделить видимые их части от невидимых (рис.14).

Рис. 14

Р е ш е н и е . Первая часть задачи сводится к построению линии пересечения двух плоскостей.

Известно, что линией пересечения двух плоскостей является прямая линия, для построения которой достаточно определить две точки, общие обеим плоскостям. В данном случае общие точки для обеих плоскостей найдены как точки пересечения: М – стороны DE треугольника DEF с плоскостью Г(АВС); N – стороны ВС треугольника АВС с плоскостью ∆(DEF). Точка М определена с помощью вспомогательной фронтально проецирующей плоскости θ(θ2), точка N – посредством горизонтально проецирующей плоскости Σ(Σ1) проведенных через DE и BC соответственно.

Линия пересечения плоскостей ограничена отрезком MN прямой, заключённым между точками встречи контура одной фигуры с ограниченной плоскостью другой.

Найдя линию пересечения, переходим к отделению видимых участков пластинок от невидимых, начав с горизонтальной проекции (вид а сверху). С этой целью рассмотрим две горизонтально конкурирующие точки 5 Î АВ и 6 Î DE. Сравнивая расстояния фронтальных проекций этих точек по отношению к плоскости П1. замечаем, что точка 6 пластинки DEF, а следовательно, и участок стороны DE, находится под плоскостью пластинки АВС. В точке М происходит переход невидимого участка прямой DE к видимому.

Аналогичными рассуждениями при помощи фронтально конкурирующих точек 1 Î АВ и 7 Î DE определяем видимость на фронтальной проекции.


Сборочный чертеж