Замена переменной в определенном интеграле Определение двойного интеграла Определение тройного интегралаПроизводная сложной функции Двойные интегралы в полярных координатах Двойные интегралы в произвольной области


Примеры решения задач контрольной работы по теме Интегралы

Интегральный признак Коши

Пусть f (x) является непрерывной, положительной и монотонно убывающей функцией на промежутке [1, +∞). Тогда ряд

сходится, если сходится несобственный интеграл , и расходится, если .

Пример Определить, сходится или расходится ряд .

Решение. Используем интегральный признак Коши. Вычислим соответствующий несобственный интеграл: Таким образом, данный ряд расходится.

Пример Показать, что обобщенный гармонический ряд сходится при p > 1. Решение алгебраических и
трансцендентных уравнений

Решение. Рассмотрим соответствующую функцию и применим интегральный признак. Несобственный интеграл равен Видно, что обобщенный гармонический ряд сходится при значении p > 1

В зависимости от типа произведения применятся одна из трех формул:

  Пример.

  Пример.


Геометрические приложения двойных интегралов