Замена переменной в определенном интеграле Определение двойного интеграла Определение тройного интегралаПроизводная сложной функции Двойные интегралы в полярных координатах Двойные интегралы в произвольной области


Примеры решения задач контрольной работы по теме Интегралы

Геометрические приложения криволинейных интегралов

Пример Найти объем тела, образованного вращением вокруг оси Ox области R, ограниченной кривой , и прямыми x = 0, x = , y = 0.

Решение. Данное тело вращения схематически показано на рисунке 9. Объем этого тела найдем по формуле Вычислим криволинейные интегралы Следовательно, объем тела равен

Пример Найти объем эллипсоида, образованного вращением эллипса с полуосями a и b вокруг оси Оx. (рисунок 10). Понятие предела последовательности поясним пока на простых примерах: Определение производной функции, ее геометрический и физический смысл, ее свойства подробно описаны в §13 лекций. Займемся непосредственно вычислением производных, для чего используем сводную таблицу формул дифференцирования. Вторая часть таблицы, в которой приведены производные основных элементарных функций, записана для сложных функций вида f(u), u=u(x).

Рис.10 
Решение. Воспользуемся параметрическими уравнениями эллипса Мы можем ограничиться рассмотрением половины эллипса, лежащей в верхней полуплоскости y ≥ 0. Тогда объем эллипсоида с полуосями a, b, b будет равен где под функцией y(x) подразумевается верхняя половина эллипса. Переходя к параметрической форме записи, находим объем Отсюда, в частности, следует, что объем шара (при этом a = b = R)

равен .

Теорема. При сформулированных выше условиях для непрерывной на функции .

Строгое доказательство этой теоремы потребовало бы значительных усилий из-за обилия технических деталей. Мы изложим здесь схему доказательства. Во-первых, оба интеграла в формулировке теоремы существуют, поскольку - непрерывная функция.

Рассмотрим разбиение области прямыми, параллельными осям . Рассмотрим его часть, имеющую вид прямоугольника с вершинами .

При отображении эти точки перейдут, соответственно, в точки .

Далее, при

Геометрические приложения двойных интегралов