Замена переменной в определенном интеграле Определение двойного интеграла Определение тройного интегралаПроизводная сложной функции Двойные интегралы в полярных координатах Двойные интегралы в произвольной области


Примеры решения задач контрольной работы по теме Интегралы

Геометрические приложения двойных интегралов

Пример Вычислить объем единичного шара.

Решение. Уравнение сферы радиусом 1 имеет вид (рисунок 14). В силу симметрии, ограничимся нахождением объема верхнего полушара и затем результат умножим на 2. Уравнение верхней полусферы записывается как Преобразуя это уравнение в полярные координаты, получаем В полярных координатах область интегрирования R описывается множеством . Следовательно, объем верхнего полушара выражается формулой Сделаем замену переменной для оценки последнего интеграла. Пусть . Тогда . Уточним пределы интегрирования: t = 1 при r = 0, и, наоборот, t = 0 при r = 1. Получаем Таким образом, оьъем единичного шара равен

Пример Используя полярные координаты, найти объем конуса высотой H и радиусом основания R (рисунок 15).

Решение.
Рис.15 Рис.16

Сначала получим уравнение поверхности конуса. Используя подобные треугольники (рисунок 16), можно записать Следовательно, Тогда объем конуса равен

Тройной интеграл. Его основные свойства и приложения. Вычисление тройного интеграла

Рассмотрим кубируемую область в трехмерном пространстве . Разбиение на части осуществляется непрерывными поверхностями. Диаметр разбиения определяется аналогично двумерному случаю. Также, по аналогии, можно определить для функции , разбиения области и выбранных точек интегральную сумму , где обозначает объем области .

Определение. Пусть такое число, что . Тогда мы говорим, что интегрируема на , число есть интеграл по области и обозначаем это так: .

Как и в случае двойного интеграла, выполняются аналогичные свойства 1-6. Можно доказать, что если непрерывна на , то она интегрируема на . Точно также можно убедиться в том, что если точки разрыва лежат на конечном числе непрерывных поверхностей, лежащих в и разбивающих на кубируемые области, то интегрируема на .

Геометрические приложения двойных интегралов